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Abstract—High dynamic range (HDR) imaging techniques
have been working constantly, actively and validly in the fault
detection and disease diagnosis in the astronomical and medical
fields, and currently they have also gained much more attention
from digital image processing and computer vision communities.
While HDR imaging devices are becoming priced friendly, HDR
display devices are still out of reach of typical consumers. Due
to the limited availability of HDR display devices, in most cases
tone mapping operators (TMOs) are used to convert HDR images
to standard low dynamic range (LDR) images for visualization.
But existing TMOs cannot work effectively for all kinds of HDR
images, with their performance largely depending on brightness,
contrast, structure properties of a scene. To accurately measure
and compare the performance of distinct TMOs, we in this paper
develop an effective and efficient no-reference objective quality
metric which can automatically assess LDR images created by
different TMOs without access to the original HDR images. Our
model is shown to be statistically superior to recent full- and no-
reference quality measures on the existing tone-mapped image
database and a new relevant database built in this work.

Index Terms—High dynamic range (HDR), tone mapping,
image quality assessment (IQA), no-reference (NR), information
entropy, statistical naturalness, structural preservation

I. INTRODUCTION

OVER the last decades, low dynamic range (LDR) images
displayed on standard 8-bit monitors have dominated our

daily experience with digitalized visual signals. Due to the
restricted 256 levels of intensity, LDR display can possibly
lead to the missing of some fine image details, which may turn
out to be critical in some military and medical applications.
With the rapid development of imaging and data processing
technologies, in recent years much attention has been paid to
high dynamic range (HDR) images that have broader dynamic
ranges of intensity levels, so as to better represent luminance
variations ranging from direct sunlight to faint starlight and
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maintain more detailed information [1]. At present, various
research areas concerning HDR images abound [2-3].

A common problem in computer graphics applications is
how to visualize HDR images on standard 8-bit display
devices. To address this problem, a growing number of tone
mapping operators (TMOs) that convert HDR to LDR images
have been devised in [4-6]. Due to the reduction in dynamic
range, TMOs inevitably cause information loss. Therefore, on
one hand the best tone-mapped image generated from the
HDR version still calls for a human-assisted step, in which
subjects compare a large set of tone-mapped images produced
by distinct TMOs to pick the most satisfactory one, and on
the other hand, an HDR tone-mapped image cannot appear as
good as the HDR one displayed on monitors of more than
8 bits. But an HDR tone-mapped image via the proper tone
mapping operation can provide a greater sense of luminance,
contrast and details than a traditional LDR one, even though
both them use the same 8-bit representation.

Nowadays, the need of image quality assessment (IQA) is
grown by the rapid growth of multimedia applications, such
as the optimization of video compression [7, 8], transmission
[9] and enhancement [10, 11]. In the past several years, the
designs of IQA were concentrating on assessing LDR images.
Among them, the most popular one is perhaps the structural
similarity index (SSIM) [12], which compares the similarities
of the original and distorted images in light of luminance,
contrast and structural information. After that, some modified
SSIM-type of approaches have been designed, such as multi-
scale SSIM (MS-SSIM) [13] and optimal scale selection SSIM
(OSS-SSIM) [14].

The reference images, however, are not available in many
cases, e.g. postprocessing systems. As a result, no-reference
(NR) / blind IQA has induced many interests over the last
few years. The first type of NR-IQA tries to take advan-
tage of the underlying relationship of natural scene statistics
(NSS)-based features and subjective ratings, e.g. Distortion
Identification-based Image Verity and INtegrity Evaluation
(DIIVINE) [15], BLind Image Integrity Notator using DCT
Statistics (BLIINDS-II) [16], and Blind/Referenceless Image
Spatial Quality Evaluator (BRISQUE) [17]. The second type
of model systematically merges two reduced-reference (RR)
quality metrics [18-19]1 to eliminate the requirement of the

1RR IQA works under the situation that the partial original image or some
extracted features are available as auxiliary information for quality evaluation.
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lossless image [20]. The third type of blind IQA approaches
works even without using human scored images, for instance,
natural image quality evaluator (NIQE) [21] and quality-aware
clustering (QAC) [22].

Clearly, an IQA metric suitable to LDR images and HDR
images has substantial importance and wide applications. By
some modifications of high contrast vision, nonlinear response
to light for the full range of luminance and local adaption,
Mantiuk et. al have improved the visual difference predictor
(VDP) to develop the VDP-HDR [23], which can assess the
visual quality of HDR images and LDR ones. In contrast, the
VDP-HDR-2 [24] and VDP-HDR-2.2 [25] were subsequently
proposed with a complete overhaul. The two metrics through
mimicking the anatomy of the human visual system (HVS)
have acquired fairly well correlation performance accuracy in
accordance with subjective opinions in assessing both LDR
and HDR images.

There have been very limited efforts devoted to the quality
evaluation of a tone-mapped image compared to its associated
HDR one, although the performance of any of existing TMOs
is not always effective for all kinds of HDR images, which
relies on brightness, contrast, structure, color and visual scene.
So the systems to faithfully measure and compare the visual
quality of tone-mapped images created by various TMOs are
highly desirable.

Yeganeh and Wang were the pioneers paying attention to
this issue [26]. They first presented a dedicated tone-mapped
image database (TMID), which consists of 120 tone-mapped
images created from 15 HDR versions by using eight distinct
TMOs and the corresponding mean opinion scores (MOSs)
recorded from 20 subjects. The TMID database offers mean
human ratings of testing images, but subjective methods are
considerably time-consuming, costly and labor intensive for
real-time processing systems, and are thus hardly applied in
automatic operator or parameter optimization to obtain the
tone-mapped image of optimal quality. To that end, Yeganeh
et. al also explored the tone-mapped quality index (TMQI)
with a two-part framework. One is the modified MS-SSIM
and the other comes from the NSS regulation that provides
some fundamental regularities of natural images [27].

As previously mentioned, despite numerous IQA methods,
it was found by tests that the TMQI and existing NR-IQA
metrics do not achieve satisfactory performance on assessing
the quality of tone-mapped images [28]. Accordingly, in this
paper we devise an effective blind tone-mapped quality index
(BTMQI) via the analysis of information, naturalness and
structure. First, we assume that a high-quality tone-mapped
image maintains much information [28] and we thus measure
the information entropy of a set of intermediate images by
darkening / brightening the original brightness of the input
tone-mapped image. Second, as indicated in [29], the human
visual sensation is highly adapted to the natural environment
and a natural-looking LDR image is thereby more expected.
Hence the departure of a tone-mapped image from natural
image statistics is considered to be a significant measure of
perceptual quality. Third, primary image structures contained
in the HDR image should be preserved in its associated tone-
mapped one, which motivates the use of the Sobel operator

(a) HDR image (c) Darkened image (e) Brightened image

(b) LDR image (d) Darkened image (f) Brightened image

Fig. 1: Comparison of high and low dynamic range images [30]:
(a)-(b) HDR image and its related normal 8-bit LDR image; (c)-(d)
Darkened images of (a)-(b) with 1/64th the original brightness; (e)-(f)
Brightened images of (a)-(b) with 32 times the original brightness.
We label the obviously different regions with rectangles.

with a constant threshold to detect basic structures in a tone-
mapped image. Lastly, a trained regression module is used
to combine the aforementioned three respects of features to
derive the overall quality score.

The rest of this paper is arranged as follows. Section II first
describes the proposed blind IQA approach. In Section III, a
comparison of our technique with TMQI and state-of-the-art
NR-IQA metrics on the TMID database [26] and a new image
database developed in this research is reported and analyzed.
We finally conclude this paper in Section IV.

II. BLIND BTMQI APPROACH

In order to better visualize the differences between the high
and low dynamic range images, the HDR shop [30] offers
an example, as provided in Fig. 12. Though we cannot easily
show the differences between the two images in (a) and (b),
their darkened and brightened versions are able to show the
differences. In Fig. 1, (c) and (d) are created by darkening (a)
and (b) to 1/64th the original brightness, while (e) and (f) are
generated by brightened to 32 times the original brightness.
Some noticeably distinguished regions are labeled with white
rectangles in darkened images (c)-(d) and black rectangles in
brightened images (e)-(f).

We find that the tone-mapped image, due to the limitation
of dynamic range, cannot preserve all the information of the
original HDR image. It is reasonable to suppose that a good
tone-mapped image contains a great amount of information.
On this basis, the first consideration of our metric assessing

2Actually, we cannot display the HDR images in this paper, so the HDR
monitor is used to show the HDR images to be captured by a screenshot tool.
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the quality of a tone-mapped image is to straightforwardly
estimate the information volume in itself and the intermediate
images created by darkening / brightening the original lumi-
nance. The intermediate images are produced by

Ii = min(max(Mi · I, 0), 255) (1)

where I is an input tone-mapped image, and Mi indicates the
i-th multiplier. The max and min operators are applied to clip
the intermediate images into the range of 0 ∼ 255.

Next, we need to seek for a way to measure the information
amount. Information entropy [31], as an important concept in
statistics, is an appropriate criterion. By computing the mean
unpredictability of one random signal, entropy represents its
disorderly degree. More precisely, given a probability density
p, we define its entropy as

E(p) = −
∫
p(x) log p(x)dx. (2)

To compare the differences of two probability distributions,
other important metrics, such as the Kullback-Leibler (K-L)
divergence and its modified symmetric formats [32, 33], are
also frequently employed information-theoretic “distances”.
However, we find by experiments that, in contrast to entropy,
the use of the K-L divergence or its symmetric versions is
not able to contribute to considerable performance gain, but
introduce much cost time. So we determine to adopt entropy
to quantify the information volume.

A good tone-mapped image, in most cases, is generally of
large entropy. We first offer a pair of tone-mapped images in
Fig. 2, where (a) shows a comparatively high-quality tone-
mapped image while (b) indicates a low-quality tone-mapped
image. We then create a group of intermediate images with
M = {1, n, 1

n |n = 1.5, 2.0, ..., 10} for each of the two
images before calculate the associated entropy values. Fig.
2(c) illustrates how the entropy E varies with the changes
of the multiplier M . To specify, the top red curve and bottom
blue curve correspond to (a) and (b), respectively. It is easy
to observe that, by a small amount of decrease / increase in
luminance, entropy of (b) quickly falls down to a low level,
which means that it contains less information. In comparison,
(a) presents a good resistance to the fast fading of entropy.
Referring to subjective human ratings in the TMID database
[26], (a) indeed has a higher quality score than (b).

Two other tone-mapped images selected from the TMID
database are also exhibited in Figs. 2(d)-(e) for comparison.
Both the images do not have any over-exposed or under-
exposed areas. The former image is of slightly better quality
than the latter one. Fig. 2(f) displays the relationship between
the multiplier M and the corresponding entropy E in (d)-(e),
which presents a similar result compared to (c) although the
red curve and the blur one is quite close to each other and
four in 39 values reverse somewhat.

To find a good balance between efficacy and efficiency, we
take advantage of only nine entropy values that are measured
using M = {1, n, 1

n |n = 3.5, 5, 6.5, 8} as features. It needs
to stress that we also testify and compare the performance of
numerous other choices for n, and results tell that our final

(a) (b)

(c)

(d) (e)

(f)

Fig. 2: Illustration of how the entropy E vary with the changes of the
multiplier M : (a) A comparatively high-quality tone-mapped image.
(b) A low-quality tone-mapped image. (c) The relationship between
the varied multiplier M and the corresponding entropy E in (a) and
(b). The top red curve is for (a), and the bottom blue one is for (b).
(d)-(f) correspond to another example similar to (a)-(c).

selection can bring about 2% performance boosts relative to
the majority of choices.

Notice that the above-mentioned nine numbers are global-
based entropy. Broadly speaking, the perception of the human
brain to visual signals inclines to a local-and-global manner.
With this concern, many recent techniques in various kinds
of research directions, e.g. full-reference (FR) IQA [34] and
saliency detection [35], have resulted in better performance.
Hence we redefine the entropy of each of nine intermediate
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images stated above to be

Et(Ii) = wEg(Ii) + (1− w)El(Ii)v (3)

where Eg(Ii) and El(Ii) indicate the global and local entropy
respectively; w and v are positive constants for manipulating
the relative importance of the two components above and are
set to be 0.59 and 1.5 in this work. Referring to the scheme in
[22], the local entropy is estimated as the mean of block-based
entropy, which is defined by

El(Ii) =
1

L

L∑
j=1

E(Bi,j) (4)

where Bi,j represents the j-th block of size 72 × 72 in the
i-th intermediate image; L is the number of the blocks in the
image.

The second consideration of our approach is the statistical
naturalness; that is we assume a high-quality tone-mapped
LDR image should look natural as well. During the last few
years, there has been a large body of literature dedicated
to the statistics of natural images, in order to facilitate the
explorations of image / video processing technologies and the
understanding of biological vision [36]. Many existing NR-
IQA metrics were built upon the natural scene statistics, e.g.
[15-17]. The fundamental idea behind these models lies in that,
for natural images, the normalized coefficients processed by
local mean removal and divisive normalization closely follow
a Gaussian distribution, whereas different distortion types or
levels will reshape this distribution.

Nevertheless, we noticed that the aforesaid statistic model
is not proper in assessing the visual quality of tone-mapped
images, and another NSS-based model is thus in demand. A
recent research of natural statistics on tone-mapped images
has revealed that there exist high correlations of naturalness
and image attributes, particularly the luminance and contrast
[37]. Inspired by this, our BTMQI model takes into account
a statistical naturalness model developed upon the average
luminance and contrast [26]. In essential, this model provides
an ideal tradeoff between the simplicity and the capability of
capturing the crucial ingredients of image naturalness.

To be more concrete, based on natural statistics, this model
is constructed by using 3,000 natural images with different
categories of natural scenes, including animal, nightfall, fresco,
building, grassland, tree, snow mountain, train, toy, sea, car,
artifact, flower, and appliance. For each of above categories,
a vast number of images were downloaded from [38, 39],
and then 3,000 high-quality natural images were selected for
the aforementioned fourteen content types. In each category
two sample images are exhibited in Fig. 3. For each of the
natural images, we first convert it to be the gray-scale image
via chromatic information removal before divided into a series
of 11×11 patches. Next we compute the local mean (MP ) and
local standard deviation (NP ) of each patch, so as to derive
the global mean (m) and standard deviation (d) of the natural
image by

m =
1

H

H∑
h=1

MP (h), d =
1

H

H∑
h=1

NP (h) (5)

Fig. 3: Representative images in the chosen 3,000 natural images.

(a) (b)

Fig. 4: Histograms of (a) means (fitted by Gaussian probability den-
sity function) and (b) standard deviations (fitted by Beta probability
density function) of natural images.

where H stands for the number of patches in the image. In
Fig. 4, we plot the two histograms of means and standard
deviations of the 3,000 natural images. In general, these two
measures are able to reflect the image intensity and contrast.
It is viewed that the two histograms can be well fitted by
a Gaussian function and a Beta probability density function
defined as follows:

Pm(m) =
1√

2πσm
exp

[
− m− µm

2σ2
m

]
(6)

and

Pd(d) =
(1− d)βd−1dαd−1

B(αd, βd)
(7)

where B(·) is the Beta function; the model parameters are
assigned to be µm = 115.94, σm = 27.99, αd = 4.4, and
βd = 10.1. The fitting curves are shown in Figs. 4(a)-(b). We
further estimate their joint probability density function to be
their product for dimensional reduction of features and finally
define the statistical naturalness measure as

N =
1

K
PmPd (8)

where K is a normalization factor changed with both Pm and
Pd. In this work we define K = max{Pm, Pd} to make the
statistical naturalness feature N normalized.

The third consideration of our approach is to calibrate the
ability of a tone-mapped image to preserve main structures.
In [12], Wang et al. indicated that the HVS highly adapts
to extracting the structural information from an input visual
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(a) (b) (c)

(d) (e) (f)

Fig. 5: Comparison of structural preservation ability: (a)-(c) indicate
three tone-mapped LDR images associated to the same HDR image;
(d)-(f) show the detected primary structures from (a)-(c).

stimulus, and they also provided a large set of examples to
demonstrate that the structure-based SSIM is superior to the
traditional mean-squared error (MSE) on assessing the image
quality. In fact, numerous high-accuracy IQA algorithms are
designed based on structural similarity [13, 14] or gradient
magnitude similarity that can be regard as another measure of
image structure [34, 40].

Note that the computation of structural similarity requires
both original and distorted images, but the original references
are not accessible under the blind condition. Therefore we
make use of the gradient magnitude with a small threshold to
search for the primary structures. Particularly, we first apply
one of the most famous Sobel operator to extract the image
gradient magnitude G. Because only the basic structures are
wanted, a small threshold T (= 0.05) is further employed to
remove the fragments:

X(n) =

{
1 if G(n) ≥ T
0 otherwise (9)

where n represents the image pixel index. As given in Fig.
5, (a)-(c) indicate three tone-mapped LDR images associated
to the same HDR image, and (d)-(f) are the results. By the
usage of the Sobel operator, it can be observed in (d)-(f)
that the primary structures have been detected. In Fig. 5, (e)
shows more structures than (f) but less than (d); for instance,
the fresco hanging on the wall and the two vents in the top
right corner. This means (e) has a better ability for structural
preservation than (f) but worse than (d). These results are
consistent with the MOS scores in [26] that (b) has a higher
quality score than (c) but a lower one than (a). Accordingly,
we compute the mean of X (marked as S) to measure how a
tone-mapped image can preserve structures.

So far, we have extracted in total eleven features from a
tone-mapped image, including {Et(Ii), N, S|i = 1, 2, . . . , 9}.
Thereafter, we need to find a mapping learnt from the feature
space to subjective human ratings with a regression module,
and then use it to yield a quality score of the tone-mapped
image. Of course, any regressor can be utilized. Considering
the broad application of the support vector regression (SVR)
[41], e.g. facet modelling [42] and visual classification [43],

we also apply it following the method in [15-17]. Here the
LIBSVM package [44] is adopted to implement SVR with a
radial basis function (RBF) kernel, and more contents about
training and testing will be described in Section III.

Finally, we will explain how to compute the overall quality
of a tone-mapped image. For the image I , we first extract
11 features of information entropy, statistical naturalness and
structural preservation. Second, the module trained on the
entire images in the TMID database is used to integrate the
aforesaid 11 features to predict the visual quality of the tone-
mapped image I . For example, with our BTMQI technique,
we estimate the objective quality scores of the tone-mapped
images displayed in Figs. 5(a)-(c). The BTMQI scores are
respectively 2.4, 4.0 and 7.4, having the same order with their
subjective scores 2, 4.5 and 7.8. The performance of our blind
IQA algorithm will be validated in the next section.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we will testify the correlation performance
of the proposed BTMQI metric by comparison with popular
and state-of-the-art blind IQA techniques on existing TMID
database and a new relevant database built in our research.
After that, we will analyze the advantages and disadvantages
of our BTMQI model and offer several possible suggestions
in the future work.

A. Experimental Protocol

We calibrate the correlation performance of the proposed
BTMQI metric with some state-of-the-art IQA techniques on
the TMID database [26]. The TMID database was developed
at University of Waterloo, Canada. 15 HDR images were used
to create a total of 120 tone-mapped LDR images with eight
different TMOs. In each image set, 20 observers were invited
to rank the eight testing images from the best to the worst,
scored as 1 to 8. The subjective rankings for each image are
then averaged to yield the final score.

The testing IQA models include six leading blind metrics
and the FR TMQI method. The first model is the TMQI [26]
that integrates the modified MS-SSIM [13] and a NSS-based
statistical naturalness model. The second one is the DIIVINE
[15], which adopts NSS-based 88 features to characterize the
essence of natural images by distortion identification followed
by distortion-specific visual quality metrics. The third one is
the BLIINDS-II [16], which extracts 24 features in the DCT
domain and then uses a Bayesian inference model to predict
quality. The fourth one is the BRISQUE [17], which relies on
scene statistics of locally normalized luminance coefficients
to quantify “naturalness” losses, so as to infer a quality score.
The fifth one is the NFERM [20], which was built upon an
observation that there exists an approximate linear relationship
of the features extracted by using two RR IQA algorithms,
to eliminate the requirement of the original references. The
sixth one is the NIQE [21], which does not apply any prior
knowledge of contents or distortions but rather than measures
the deviations from statistical regularities of natural images to
predict quality. The seventh one is the QAC [22] that uses
a codebook learnt from quality-aware centroids to derive the
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TABLE I: Performance comparison of BTMQI and leading IQA algorithms. We bold the top two models.

TMID database [26] Four-parameter logistic function Generalized linear models
Model Type PLCC SROCC KROCC PLCC SROCC KROCC

TMQI [26] FR 0.7715 0.7407 0.5585 0.7467 0.7407 0.5585
DIIVINE [15] NR 0.3791 0.3664 0.2986 0.1894 0.1711 0.1154

BLIINDS-II [16] NR 0.5019 0.4429 0.3072 0.4914 0.4429 0.3072
BRISQUE [17] NR 0.5481 0.4810 0.3351 0.5151 0.4810 0.3351
NFERM [20] NR 0.3249 0.2427 0.1693 0.1630 0.2424 0.1685

NIQE [21] NR 0.5652 0.4968 0.3495 0.4582 0.4968 0.3495
QAC [22] NR 0.7148 0.5186 0.3597 0.6189 0.5184 0.3588

BTMQI (Pro.) NR 0.8541 0.8282 0.6545 0.8330 0.8282 0.6545

quality level of each image patch, in order to generate the
overall quality score.

As suggested by video quality experts group (VQEG) [45],
the nonlinear regression between subjective human ratings
and objective quality predictions is computed with the four-
parameter logistic function. Then three typical indices are used
to compute the correlation performance. The first and second
indices are the Spearman rank-order correlation coefficient
(SROCC) and the Kendall’s rank-order correlation coefficient
(KROCC) for measuring the prediction monotonicity, and the
third one is the Pearson linear correlation coefficient (PLCC)
for measuring the prediction accuracy. Among the aforesaid
three indices, a good objective quality metric is expected to
be close to one in SROCC, KROCC and PLCC. More relevant
information can be found in [40].

B. Performance Measure and Comparison

To evaluate the correlation performance of our metric, we
use a training procedure to test the regression module3. Via
the commonly used training process, we randomly divide
120 tone-mapped images in the TMID database into two
subsets. One is the training set which consists of 96 images
corresponding to 80% HDR images, and the other used for
testing involves the rest 20%. In order to validate that the
proposed BTMQI is robust across image contents and is not
decided by the specific train-test split, we repeat this random
80% train - 20% test procedure 1,000 times, and report the
median performance value across the 1,000 iterations for the
purpose of eliminating performance bias as much as possible.
The results of our approach are tabulated in Table I, which
indicates the substantially high performance accuracy of the
proposed BTMQI.

We further present the performance results of the seven
competing IQA methods in Table I. For a fair comparison,
we use the logistic function to reduce the nonlinearity of
predicted scores of seven testing metrics before measure
the corresponding SROCC, KROCC and PLCC values. It is
clear that our technique performs better than those recently
developed NR-IQA algorithms. Owing to the non-existence
of the reference image, blind metrics are considered hardly
matchable with FR-IQA methods. Despite this, the proposed
BTMQI technique still outperforms the FR TMQI method

3The correlation performance measure used in [26] is to compute the mean
value of correlations obtained on subsets of the data, while in this paper all
the correlations are computed using the whole database.

TABLE II: Comparison of distinct feature combinations in BTMQI.

TMID database [26]
Model Num Train-Test SROCC KROCC

BTMQI9

9

53%-47% 0.7455 0.5573
BTMQI9 60%-40% 0.7536 0.5663
BTMQI9 67%-33% 0.7616 0.5765
BTMQI9 73%-27% 0.7698 0.5854
BTMQI9 80%-20% 0.7822 0.6014
BTMQI9 87%-13% 0.7882 0.6219
BTMQI10

10

53%-47% 0.7778 0.5875
BTMQI10 60%-40% 0.7843 0.5984
BTMQI10 67%-33% 0.7950 0.6101
BTMQI10 73%-27% 0.8074 0.6260
BTMQI10 80%-20% 0.8209 0.6473
BTMQI10 87%-13% 0.8262 0.6611
BTMQI11

11

53%-47% 0.7856 0.5950
BTMQI11 60%-40% 0.7929 0.6059
BTMQI11 67%-33% 0.8030 0.6187
BTMQI11 73%-27% 0.8150 0.6329
BTMQI11 80%-20% 0.8282 0.6545
BTMQI11 87%-13% 0.8382 0.6778

remarkably. The success of generalized linear models (GLZ)
has been already demonstrated in the qualitative assessment
of multi modal distortions in digital images [46, 47]. Apart
from the logistic function, we also make use of the GLZ to fit
objective quality scores to subjective human ratings followed
by computing the performance indices. The associated results
are provided in Table I for comparison.

Due to the fact that our approach is constructed by three
components (i.e. information entropy, statistical naturalness
and structural preservation), the contribution of each group
of features deserves a quantified comparison. Apart from the
80% train - 20% test procedure, other train-test procedures
with 53%-47%, 60%-40%, 67%-33%, 73%-27%, 87%-13%,
are used to validate and compare three distinct combinations
of features in the proposed BTMQI method. We illustrate the
results in Table II. BTMQI9, BTMQI10 and BTMQI11 are
respectively developed based on the first group of 9 features,
the first and second groups of 10 features, and all the three
groups of 11 features. Results show that a good blind quality
measure has been obtained by only using the first group of
9 simple features regarding information entropy. Even with
about 50% training samples, BTMQI9 with 9 features is still
statistically equivalent to the FR TMQI method. Also, we can
observe that a higher performance can be acquired by adding
the other two types of features regarding statistical naturalness
and structural preservation. Furthermore, results also confirm
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TABLE III: Statistical significance comparison of BTMQI9, BTMQI10 and BTMQI11 with z-test on the TMID database.

TMID database [26]
Model -1 : Model -2 53%-47% 60%-40% 67%-33% 73%-27% 80%-20% 87%-13%
BTMQI10 : BTMQI9 +1 +1 +1 +1 +1 +1
BTMQI11 : BTMQI9 +1 +1 +1 +1 +1 +1
BTMQI11 : BTMQI10 +1 +1 +1 0 0 0

TABLE IV: Mean computational time of testing models (in second/image) on all the 120 images in the TMID database.

TMID database [26]
Model TMQI DIIVINE BLIINDS-II BRISQUE NFERM NIQE QAC BTMQI

Time (sec.) 0.2588 17.772 54.805 0.2768 36.417 0.3229 0.1028 0.2425

(a) (b) (c)

(d)

Fig. 6: Illustration of the TMID2015 database: (a)-(c) exemplary images; (d) the final score of each testing LDR image.

that the model performance grows as the training data size
increases.

Besides evaluations and comparisons based on the three
performance indices mentioned above, we further apply the
z-test after the Fisher transform [45] to evaluate the statistical
significance on the SROCC results of testing IQA models,
since the test is conducted in the same database. Results tell
that the proposed BTMQI model is statistically better than all
the testing state-of-the-art NR-IQA methods and the FR TMQI
approach. It is worthy to emphasize that, in addition to the
advanced performance, our BTMQI extracts only 11 features,
much less than the NR-IQA metrics tested. In accordance with
the suggestion given by the VQEG, the Bonferroni correction
is also used to compare the statistical significance between
each of the testing IQA models and our BTMQI metric. We
can obtain the same results, confirming the effectiveness of
the proposed method once more.

Furthermore, a comprehensive comparison of statistical
significance among BTMQI9, BTMQI10 and BTMQI11 with
six train-test procedures is conducted using the z-test. We
show the associated results in Table III. The null hypothesis
shows that the mean correlation for Model -1 is statistically
equivalent to that for Model -2 . A value of “+1” means that
Model -1 is statistically superior to Model -2 , whereas a “-1”

means that Model -1 is statistically worse than Model -2 . A
value of “0” means that Model -1 and Model -2 are statistically
indistinguishable (or equivalent) to each other. From Table
III, we can conclude that the BTMQI9 with 9 features all
related to information entropy has already given good results,
but the 10th statistical naturalness feature completely brings
performance advance in statistical significance at all the train-
test procedures. In contrast, the 11th structural preservation
feature also induces performance gain in statistical significance
to some extent, at half of all six train-test procedures. Like-
wise, the Bonferroni correction is also used here to compare
the statistical significance among BTMQI9, BTMQI10 and
BTMQI11 metrics with six train-test procedures. The same
results with those illustrated in Table III can be derived.

A good quality metric should be simultaneously effective
and efficient. Therefore we calculate the implementation time
of each testing IQA model on the whole 120 tone-mapped
images in the TMID database as well. The test is conducted
by MATLAB on a computer with 3.40GHz CPU processor
and 4GB memory. Table IV tabulates the average time of
each metric. With a series computing, the proposed BTMQI
algorithm merely takes less than one fourth second to assess
an image. Since each of the features used in our method is
independent of others in the computation, parallel computing
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TABLE V: Performance comparison of all testing IQA models on the TMID2015 database. We bold the top two methods.

TMID2015 database (Four-parameter logistic function)
Model TMQI DIIVINE BLIINDS-II BRISQUE NFERM NIQE QAC BTMQI
PLCC 0.6417 0.3383 0.1493 0.0143 0.1757 0.4151 0.2659 0.6824

SROCC 0.5551 0.3862 0.1235 0.1247 0.1580 0.4223 0.2204 0.7061
KROCC 0.3943 0.2697 0.0992 0.0703 0.1349 0.2857 0.1522 0.5154

TMID2015 database (Generalized linear models)
Model TMQI DIIVINE BLIINDS-II BRISQUE NFERM NIQE QAC BTMQI
PLCC 0.6118 0.3362 0.0180 0.0147 0.2092 0.4036 0.2363 0.6655

SROCC 0.5551 0.3862 0.1189 0.1247 0.2509 0.4223 0.2204 0.7061
KROCC 0.3943 0.2697 0.0726 0.0703 0.1700 0.2857 0.1522 0.5154

is possibly introduced to reduce the implementation time to a
large extent.

C. Cross Validation Using New Database

It has been so far validated on the TMID database that our
BTMQI metric has acquired superior performance and it is
immune to the influence of varying image contents. Notice
that, besides the two points above, a good tone-mapped IQA
model should be also robust across distinct TMOs. Therefore,
we in this research propose a new and complementary tone-
mapped image database (TMID2015), which involves three
image subsets and associated 48 tone-mapped LDR images
created by 16 different TMOs [48]4. Due to the limitation
of display, we show three exemplary images chosen from
each data set in Figs. 6(a)-(c). Twenty people were invited
to participate in our test. They are college students, consisting
of 13 males and 7 females. The entire process of testing was
conducted in a dark environment, according to the ITU-R
BT.500-13 [49]. When scoring, each image pair is displayed
in parallel on the monitor for a duration of 3 seconds.

The paired comparison method that has lately gained much
attention is used to rank each pair of tone-mapped images.
There are 120 testing image pairs for each subset, and 360
pairs for all the three sets. The subjects are inexperienced, so
56 image pairs, which are from 16 images in the two subsets
(#5 and #10) in the TMID database, are applied to train the
viewers first. The two subsets have different scenes, each one
for the outdoor forest and the indoor kitchen. As thus, each
observer should mark a total of 416 randomly presented image
pairs during about 20 minutes. A specially designed interactive
system can help users adopt only two adjacent keys to offer
their opinions, without tedious mouse operations, and this
makes the scoring process faster and subjective ratings more
reliable. We want to stress that, with up to 16 different TMOs
and the popular paired comparison method, our TMID2015
database can be considered as a good complement to the
existing TMID database for cross-validation.

At the beginning, the score for each image was set as 0.
During the testing, if the image A has a higher subjective score
than the image B, the score of A will be increased by 1. We
show the final score of each image in the TMID2015 database
in Fig. 6(d). Two important conclusions can be derived from

4All the tone-mapped images in the TMID2015 database are produced by
Čadı́k et. al [48]. Our contribution is to obtain the associated subjective scores.

the results. First, the final scores for most images created by
the same TMO is similar, which illustrates the robustness
of subjective ratings in our test. Second, the effectiveness
and constancy of each TMO can be measured by the mean
and standard deviation values of these opinion scores. For
example, as given in Fig. 6(d), the eleventh TMO has a similar
mean score but much smaller standard deviation than the
seventh TMO, which represents the eleventh TMO has a better
constancy; the tenth TMO has a similar standard deviation but
larger mean score than the eleventh TMO, which indicates
the tenth TMO is more effective. In general, the performance
of a TMO can be automatically and precisely judged by a
good objective quality metric that has a high correlation with
subjective scores.

Using the TMID2015 database, we testify and compare
the correlation performance of our blind BTMQI model and
seven competing IQA methods. As illustrated in Table V, the
performance results that respectively correspond to logistic
function and the GLZ on the whole database. Note that the
cross validation is conducted; that is our BTMQI metric is
trained first on the TMID database and then tested on the
TMID2015 database. Since the correlations are obtained from
completely different databases, we also use the z-test and the
Bonferroni correction to measure the statistical significance
between our technique and each of other testing IQA metrics.
As expected, results show that the proposed model is superior
to other testing ones in statistical significance, which means
our BTMQI method works effectively across different image
contents, TMOs and subjective assessment methods.

D. Analysis and Future Work

The main positive contribution in this paper is to propose
a blind metric for tone-mapped images. To our knowledge,
this model is the first of this type. By performance measures
and comparisons above, the proposed blind BTMQI model is
shown to be of high performance, beyond the state-of-the-art
NR-IQA metrics and the FR TMQI algorithm that requires
the help of HDR images, and be of a low computational cost.
A good IQA algorithm is expected to be used in processing
systems and applications. In contrast to the FR TMQI model
which can be used to convert HDR images to standard LDR
versions, our blind metric can serve as a quality monitor during
the transmission and at the terminal, where the HDR images
are not accessible. More analyses concerning this are given
in the Appendix A. Furthermore, as mentioned previously,
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(a) (b) Initial image (c) The 10-th iteration (d) The 50-th iteration (e) The 200-th iteration (f) The proposed

Fig. 7: (a) TMQI and BTMQI scores of each iterative image; (b)-(f) the initial tone-mapped image and its iterative versions.

modern NR-IQA algorithms work ineffectively in assessing
the visual quality of tone-mapped images. So the robust blind
quality metric is derived by properly combining the three types
of features used in our BTMQI model into existing NR-IQA
metrics.

Despite the encouraging performance results achieved by
our method, there are two limitations in this work. One is
that the proposed BTMQI metric only takes into consideration
luminance information in the tone-mapped image, and ignores
the key aspect color reproduction in the perceived quality of
tone-mapped images. Actually, some TMOs might produce
an image with wrong colors, and thus dramatically destroy
the image quality by twisting the natural appearance of the
content and/or even making the representation of the content
misunderstood. The other limitation is that the halo artifacts
are possibly created by some local TMOs. Note that halos
oftentimes produce false contours. The third type of structural
preservation feature will detect these false contours, and treat
them as primary structures. That is to say, the proposed
BTMQI model is likely to think of a low-quality tone-mapped
image with halos to be high quality. The second type of
statistical naturalness feature will give the effect of halos a
large punishment to the image quality, relieving the negative
effect of structural preservation feature in such condition.

In the future, three improved works will be conducted. The
first work is to include the chromatic component into the
proposed BTMQI model. The second one is to devise a new
reliable strategy or improve the existing structural preservation
feature, so as to faithfully assess the quality of tone-mapped
images with halos. And the third one is to develop adaptive
multipliers in the computation of the first set of information
entropy features in BTMQI according to the attributes of the
input tone-mapped images.

IV. CONCLUSION

In this paper, we have investigated an emerging research
topic - quality assessment of tone-mapped images. First, as a
good complement to the existing TMID database, we have
proposed a new tone-mapped image database (TMID2015)
with up to 16 different TMOs in order to demonstrate the
performance accuracy of IQA models across TMOs. Second,
we have developed new and efficient features for measuring
the information entropy of luminance-changed images. With
this type of features, we have derived an effective NR IQA

model that is statistically equivalent to the FR TMQI method.
Third, by introducing two other kinds of classical features
regarding statistical naturalness and structural preservation, we
have put forward a high-accuracy blind quality measure, which
is statistically superior to the state-of-the-art NR-IQA models
and the TMQI metric on the TMID and TMID2015 databases,
and is of a substantially low computational cost. Our source
code and the TMID2015 database will be released soon at
https://sites.google.com/site/guke198701/publications.
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VI. APPENDIX A

A direct application of tone-mapped IQA is to select the
best image from many candidates created by different TMOs,
especially when the HDR image is not accessible. Another
application is to utilize the tone-mapped image quality metric
as the optimization target to develop a novel TMO. Rather
than proposing a computational tone-mapping framework,
this application is devoted to treating tone mapping as an
optimization problem in the image space and designing an
iterative search approach that starts from any initial image and
moves step-by-step in the image space towards the direction
of improving the structural fidelity measure until a (local)
maximal point is reached [50]. To specify, assuming TMQI to
be the quality measure of tone mapped images, the problem
of optimal tone mapping can be formulated as

Yopt = argmax
Y

Q(X,Y) (10)

where Q(·) represents the TMQI method, and X and Y are a
HDR image and its associated ton-mapped image respectively.
It is noted that this is a challenging problem because of the
complexity of TMQI and the high dimensionality. To do this,
an iterative approach based on gradient descent is applied.

In this paper, this optimization algorithm of 500 iterations
is employed to improve a tone-mapped image. We present the
TMQI and BTMQI scores across each iterative image in Fig.
7(a). Despite that the TMQI score is constantly growing with
the increase of iterations, our BTMQI shows different results.
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The proposed BTMQI gives the best score on about the 10-
th iteration. In reality, we find in Figs. 7(b)-(e) that the 10-
th iterative result shows better visual quality than others, for
example, the luminance variations of clouds. This phenomenon
motivates the use of BTMQI as a terminal sign to avoid the
over-iteration. We illustrate the initial, 10-th, 50-th, 200-th
and BTMQI-based optimal iterative images in Figs. 7(b)-(f).
The proposed BTMQI-based optimal iterative algorithm has
achieved better subjective image quality.
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